Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Gen Physiol ; 155(2)2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36534082

RESUMO

Normal alcohols (n-alcohols) can induce anesthetic effects by acting on neuronal ion channels. Recent studies have revealed the effects of n-alcohols on various ion channels; however, the underlying molecular mechanisms remain unclear. Here, we provide evidence that long-chain n-alcohols have dual effects on Kv7.2/7.3 channels, resulting in channel activation as the net effect. Using heterologous expression systems, we found that n-alcohols could differentially regulate the Kv7.2/7.3 channel depending on their chain length. Treatment with short-chain ethanol and propanol diminished Kv7.2/7.3 currents, whereas treatment with long-chain hexanol and octanol enhanced the currents. However, the long-chain alcohols failed to potentiate Kv7.2 currents pre-activated by retigabine. Instead, they inhibited the currents, similar to short-chain ethanol. The stimulatory effect of the long-chain n-alcohols was also converted into an inhibitory one in the mutant Kv7.2(W236L) channels, while the inhibitory effect of ethanol did not differ between wild-type Kv7.2 and mutant Kv7.2(W236L). The inhibition of currents by n-alcohols was also seen in Kv7.1 channel which does not have the tryptophan (W) residue in S5. These findings suggest that long-chain n-alcohols exhibit dual effects through independent working sites on the Kv7.2 channel. Finally, we confirmed that the hydroxyl group with a negative electrostatic potential surface is essential for the dual actions of n-alcohol. Together, our data suggest that long-chain n-alcohols regulate Kv7.2/7.3 channels by interacting with both stimulatory and inhibitory sites and that their stimulatory action depends on the conserved tryptophan 236 residue in S5 and could be important for triggering their anesthetic effects.


Assuntos
Etanol , Triptofano , Triptofano/metabolismo , Etanol/farmacologia , Octanóis
2.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34785595

RESUMO

MicroRNAs (miRNAs) have recently emerged as important regulators of ion channel expression. We show here that select miR-106b family members repress the expression of the KCNQ2 K+ channel protein by binding to the 3'-untranslated region of KCNQ2 messenger RNA. During the first few weeks after birth, the expression of miR-106b family members rapidly decreases, whereas KCNQ2 protein level inversely increases. Overexpression of miR-106b mimics resulted in a reduction in KCNQ2 protein levels. Conversely, KCNQ2 levels were up-regulated in neurons transfected with antisense miRNA inhibitors. By constructing more specific and stable forms of miR-106b controlling systems, we further confirmed that overexpression of precursor-miR-106b-5p led to a decrease in KCNQ current density and an increase in firing frequency of hippocampal neurons, while tough decoy miR-106b-5p dramatically increased current density and decreased neuronal excitability. These results unmask a regulatory mechanism of KCNQ2 channel expression in early postnatal development and hint at a role for miR-106b up-regulation in the pathophysiology of epilepsy.


Assuntos
Regulação Neoplásica da Expressão Gênica , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ2/metabolismo , MicroRNAs/metabolismo , Animais , Linhagem Celular Tumoral , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Proteínas do Tecido Nervoso , Neurônios , RNA Mensageiro , Ratos , Ratos Sprague-Dawley , Regulação para Cima
3.
Medicine (Baltimore) ; 100(30): e26803, 2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34397738

RESUMO

RATIONALE: Calcifying aponeurotic fibroma (CAF) is a rare benign fibroblastic tumor that is commonly in the hand or foot of children or adolescents. PATIENT CONCERNS: A 74-year-old female presented with a progressive pain on the medial foot for 3 years ago. The pain aggravated while walking or in a standing position for more than 20 minutes. She also complained of skin contact along the medial aspect of the foot while trying to wear a shoe. DIAGNOSIS: Physical examination revealed a firm, immobile, nontender mass accompanied with flexible flatfoot. On the single heel raise test, loss of the balance and intensification of the pain were observed. Faintly calcified soft tissue mass is shown in plain radiographs without bone involvement. Magnetic resonance imaging revealed a subcutaneous mass with ill-defined circumscribed subcutaneous mass adherent to the thickened PTT. INTERVENTIONS: The patient underwent a complete excisional biopsy, followed by medial displacement calcaneal osteotomy. OUTCOMES: The excised mass was diagnosed to be CAF on the histologic examination. At the 1-year follow-up, patient remained asymptomatic with no evidence of recurrence and all the radiographic parameters demonstrating flat foot improved. LESSONS: This is the first case of CAF located at PTT presenting with both foot pain and functional disability. In this case, complete excision of the causative structure along with alignment correction can contribute to successful postoperative outcome.


Assuntos
Tornozelo/diagnóstico por imagem , Fibroma Ossificante/cirurgia , Neoplasias de Tecidos Moles/cirurgia , Tendões/diagnóstico por imagem , Idoso , Feminino , Fibroma Ossificante/complicações , Fibroma Ossificante/diagnóstico por imagem , Pé Chato/etiologia , Pé Chato/cirurgia , Humanos , Neoplasias de Tecidos Moles/complicações , Neoplasias de Tecidos Moles/diagnóstico por imagem
4.
BMB Rep ; 54(6): 311-316, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33408002

RESUMO

Ethanol often causes critical health problems by altering the neuronal activities of the central and peripheral nerve systems. One of the cellular targets of ethanol is the plasma membrane proteins including ion channels and receptors. Recently, we reported that ethanol elevates membrane excitability in sympathetic neurons by inhibiting Kv7.2/7.3 channels in a cell type-specific manner. Even though our studies revealed that the inhibitory effects of ethanol on the Kv7.2/7.3 channel was diminished by the increase of plasma membrane phosphatidylinositol 4,5-bisphosphate (PI (4,5)P2), the molecular mechanism of ethanol on Kv7.2/7.3 channel inhibition remains unclear. By investigating the kinetics of Kv7.2/7.3 current in high K+ solution, we found that ethanol inhibited Kv7.2/7.3 channels through a mechanism distinct from that of tetraethylammonium (TEA) which enters into the pore and blocks the gate of the channels. Using a non-stationary noise analysis (NSNA), we demonstrated that the inhibitory effect of ethanol is the result of reduction of open probability (PO) of the Kv7.2/7.3 channel, but not of a single channel current (i) or channel number (N). Finally, ethanol selectively facilitated the kinetics of Kv7.2 current suppression by voltage-sensing phosphatase (VSP)-induced PI(4,5)P2 depletion, while it slowed down Kv7.2 current recovery from the VSP-induced inhibition. Together our results suggest that ethanol regulates neuronal activity through the reduction of open probability and PI(4,5)P2 sensitivity of Kv7.2/7.3 channels. [BMB Reports 2021; 54(6): 311-316].


Assuntos
Etanol/farmacologia , Ativação do Canal Iônico , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/metabolismo , Rim/fisiologia , Neurônios/fisiologia , Fosfatidilinositol 4,5-Difosfato/metabolismo , Animais , Depressores do Sistema Nervoso Central/farmacologia , Humanos , Rim/efeitos dos fármacos , Camundongos , Neurônios/efeitos dos fármacos , Gânglio Cervical Superior/efeitos dos fármacos , Gânglio Cervical Superior/fisiologia
5.
Proc Natl Acad Sci U S A ; 117(48): 30787-30798, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33199590

RESUMO

Transmembrane 16A (TMEM16A, anoctamin1), 1 of 10 TMEM16 family proteins, is a Cl- channel activated by intracellular Ca2+ and membrane voltage. This channel is also regulated by the membrane phospholipid phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. We find that two splice variants of TMEM16A show different sensitivity to endogenous PI(4,5)P2 degradation, where TMEM16A(ac) displays higher channel activity and more current inhibition by PI(4,5)P2 depletion than TMEM16A(a). These two channel isoforms differ in the alternative splicing of the c-segment (exon 13). The current amplitude and PI(4,5)P2 sensitivity of both TMEM16A(ac) and (a) are significantly strengthened by decreased free cytosolic ATP and by conditions that decrease phosphorylation by Ca2+/calmodulin-dependent protein kinase II (CaMKII). Noise analysis suggests that the augmentation of currents is due to a rise of single-channel current (i), but not of channel number (N) or open probability (PO). Mutagenesis points to arginine 486 in the first intracellular loop as a putative binding site for PI(4,5)P2, and to serine 673 in the third intracellular loop as a site for regulatory channel phosphorylation that modulates the action of PI(4,5)P2 In silico simulation suggests how phosphorylation of S673 allosterically and differently changes the structure of the distant PI(4,5)P2-binding site between channel splice variants with and without the c-segment exon. In sum, our study reveals the following: differential regulation of alternatively spliced TMEM16A(ac) and (a) by plasma membrane PI(4,5)P2, modification of these effects by channel phosphorylation, identification of the molecular sites, and mechanistic explanation by in silico simulation.


Assuntos
Processamento Alternativo , Anoctamina-1/genética , Anoctamina-1/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Fosfatidilinositóis/metabolismo , Regulação Alostérica , Animais , Anoctamina-1/química , Sítios de Ligação , Membrana Celular/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Camundongos , Modelos Moleculares , Conformação Molecular , Mutagênese Sítio-Dirigida , Fosforilação , Ligação Proteica , Isoformas de Proteínas , Relação Estrutura-Atividade
6.
J Bone Metab ; 27(3): 207-215, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32911585

RESUMO

BACKGROUND: Diabetic neuropathic osteoarthropathy (DNOAP) is known as debilitating diabetes complications. The aim of study is to compare bone mineral density (BMD) among diabetic foot and DNOAP, and investigate the impact of BMD proceeded from diabetic foot to DNOAP. METHODS: A DNOAP group (subgroup A and subgroup B) and control group were examined for this study. Subgroup A (n=21) were patients diagnosed with DNOAP with the development of new foot and ankle fractures, whereas subgroup B (n=4) were patients being managed with the diabetic foot before a diagnosis of DNOAP. BMD was also evaluated before the diagnosis. Control group (n=30) was diabetic foot patients without DNOAP. The demographic data, clinical and radiologic data, comorbidities, and BMD were compared for each group. And optimal BMD score was reviewed to predict fractures in neuropathic arthropathy. RESULTS: BMD was significantly lower in DNOAP group (group A and B) compared with control group. Also neuropathic arthropathy group showed poor radiological results. After comparisons of 2 group lumbar and femur BMD was significantly different, but logistic regression analysis revealed that low femur T-score could be risk predictors of the condition. Base on the data of group B and control group, the cut-off point for predicting foot and ankle fracture-related with DNOAP was -1.65 of femur BMD. CONCLUSIONS: Low BMD shows greater incidence in foot and ankle fracture patients associated with neuropathic arthropathy. A femur T score can be a risk predictor of diabetic neuropathic arthropathy for diabetic foot patients.

7.
Int J Mol Sci ; 20(18)2019 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-31500374

RESUMO

Alcohol causes diverse acute and chronic symptoms that often lead to critical health problems. Exposure to ethanol alters the activities of sympathetic neurons that control the muscles, eyes, and blood vessels in the brain. Although recent studies have revealed the cellular targets of ethanol, such as ion channels, the molecular mechanism by which alcohol modulates the excitability of sympathetic neurons has not been determined. Here, we demonstrated that ethanol increased the discharge of membrane potentials in sympathetic neurons by inhibiting the M-type or Kv7 channel consisting of the Kv7.2/7.3 subunits, which were involved in determining the membrane potential and excitability of neurons. Three types of sympathetic neurons, classified by their threshold of activation and firing patterns, displayed distinct sensitivities to ethanol, which were negatively correlated with the size of the Kv7 current that differs depending on the type of neuron. Using a heterologous expression system, we further revealed that the inhibitory effects of ethanol on Kv7.2/7.3 currents were facilitated or diminished by adjusting the amount of plasma membrane phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). These results suggested that ethanol and PI(4,5)P2 modulated gating of the Kv7 channel in superior cervical ganglion neurons in an antagonistic manner, leading to regulation of the membrane potential and neuronal excitability, as well as the physiological functions mediated by sympathetic neurons.


Assuntos
Potenciais de Ação , Etanol/metabolismo , Canais de Potássio KCNQ/metabolismo , Neurônios/fisiologia , Fosfatidilinositol 4,5-Difosfato/metabolismo , Gânglio Cervical Superior/citologia , Biomarcadores , Membrana Celular/metabolismo , Células Cultivadas , Etanol/farmacologia , Expressão Gênica , Canais de Potássio KCNQ/antagonistas & inibidores , Canais de Potássio KCNQ/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...